What is an Asymptote?

Rational functions often have asymptotes, which are lines that the graph is trying to get very close to. Vertical asymptotes will never be crossed, but horizontal asymptotes can be crossed Example: Graph the function $f(x)=\frac{1}{x+3}$ in the viewing rectangle $[-20,20]$ by $[-10,10]$
Then fill in the table of values below, and use this to describe the horizontal and vertical asymptotes of the function.

x	y
-50	
-20	
-3.5	
-3.1	
-3.01	
-3	
-2.99	
-2.9	
-2.5	
20	
50	

Why Does a Denominator Equal to Zero Create a Problem?

Graphing Rational Equations of the form $f(x)=\frac{P(x)}{Q(x)}$ (where the degree of $P(x)$ is less than or equal to the degree of $Q(x)$ and there are no holes)

- To find the y-intercept of $f(x)$, set x equal to zero (in the original equation) and solve for y.
- The x-intercept(s) will match those of $P(x)$. So, to find the x-intercepts of $f(x)$, set $P(x)$ equal to zero and solve for x.
- The vertical asymptote(s) will be the value(s) of x that make the denominator equal zero.
- To find the horizontal asymptote, you can use one of the following rules:
(1) If the degree of $P(x)$ is less than the degree of $Q(x)$, there will be a horizontal asymptote at $y=0$.
(2) If the degree of $P(x)$ is equal to the degree of $Q(x)$, use the leading coefficients of $P(x)$ and $Q(x)$.
- Vertical asymptotes cannot be crossed, but horizontal asymptotes can be crossed. To find out where (if at all) a graph crosses its horizontal asymptote, divide using either synthetic or long division and set the remainder equal to zero.

Graphing Rational Equations of the form $f(x)=\frac{P(x)}{O(x)}$ (where the degree of $P(x)$ is less than or equal to the degree of $Q(x)$ and there are no holes)

- To find the y-intercept of $f(x)$, set x equal to zero (in the original equation) and solve for y. - The x-intercept(s) will match those of $P(x)$. So, to find the x-intercepts of $f(x)$, set $P(x)$ equal to zero and solve for x.
Example: Find the x - and y-intercepts of the function $h(x)=\frac{1-4 x^{2}}{3 x^{2}-12 x-15}$.

Graphing Rational Equations of the form $f(x)=\frac{P(x)}{Q(x)}$ (where the degree of $P(x)$ is less than or equal to the degree of $Q(x)$ and there are no holes)

- The vertical asymptote(s) will be the value(s) of x that make the denominator equal zero.
- To find the horizontal asymptote, you can use one of the following rules:
(1) If the degree of $P(x)$ is less than the degree of $Q(\mathrm{x})$, there will be a
horizontal asymptote at $y=0$.
(2) If the degree of $P(x)$ is equal to the degree of $Q(x)$, use the leading coefficients of $P(x)$ and $Q(x)$.
Example: Find the asymptotes of the function $h(x)=\frac{1-4 x^{2}}{3 x^{2}-12 x-15}$.

Graphing Rational Equations of the form $f(x)=\frac{P(x)}{Q(x)}$ (where the degree of $P(x)$ is less than or equal to the degree of $Q(x)$ and there are no holes)

Vertical asymptotes cannot be crossed, but horizontal asymptotes can be crossed. To find out where (if at all) a graph crosses its horizontal asymptote, divide using either synthetic or long division and set the remainder equal to zero.
Example: Graph the function $h(x)=\frac{1-4 x^{2}}{3 x^{2}-12 x-15}$. Label the asymptotes and intercepts. To figure out where (if at all) the graph
crosses the horizontal asymptote of $y=-\frac{4}{3}$:

$3 x^{2}-12 x-15$	$-\frac{4}{3}$
	$\frac{-\left(-4 x^{2}+0 x+1\right.}{-16 x+20)}$
$-16 x-19$	$=0$
x	$=-1.1875$

Graphing Rational Equations of the form $f(x)=\frac{P(x)}{Q(x)}$ (where the degree of
$P(x)$ is less than or equal to the degree of $Q(x)$ and there are no holes)

- To find the y-intercept of $f(x)$, set x equal to zero (in the original equation) and solve for y.
- The x-intercept(s) will match those of $P(x)$. So, to find the x-intercepts of $f(x)$, set $P(x)$ equal to zero and solve for x.
Example: Find the x - and y-intercepts of the function $k(x)=\frac{5-2 x}{x^{2}}$.

Graphing Rational Equations of the form $f(x)=\frac{P(x)}{Q(x)}$ (where the degree of $P(x)$ is less than or equal to the degree of $Q(x)$ and there are no holes)

- The vertical asymptote(s) will be the value(s) of x that make the denominator equal zero. - To find the horizontal asymptote, you can use one of the following rules:
(1) If the degree of $P(x)$ is less than the degree of $Q(\mathrm{x})$, there will be a horizontal asymptote at $y=0$.
(2) If the degree of $P(x)$ is equal to the degree of $Q(x)$, use the leading coefficients of $P(x)$ and $Q(x)$.
Example: Find the asymptotes of the function $k(x)=\frac{5-2 x}{x^{2}}$.

Graphing Rational Equations of the form $f(x)=\frac{P(x)}{Q(x)}$ (where the degree of $P(x)$ is less than or equal to the degree of $Q(x)$ and there are no holes)

- To find the y-intercept of $f(x)$, set x equal to zero (in the original equation) and solve for y. - The x-intercept(s) will match those of $P(x)$. So, to find the x-intercepts of $f(x)$, set $P(x)$ equal to zero and solve for x.
Example: Find the x - and y-intercepts of the function $r(x)=\frac{9}{x^{2}+4}$.

Graphing Rational Equations of the form $f(x)=\frac{P(x)}{Q(x)}$ (where the degree of $P(x)$ is less than or equal to the degree of $Q(x)$ and there are no holes)

Vertical asymptotes cannot be crossed, but horizontal asymptotes can be crossed. To find out where (if at all) a graph crosses its horizontal asymptote, divide using either synthetic or long division and set the remainder equal to zero.
Example: Graph the function $k(x)=\frac{5-2 x}{x^{2}}$. Label the asymptotes and intercepts.

Graphing Rational Equations of the form $f(x)=\frac{P(x)}{Q(x)}$ (where the degree of $P(x)$ is less than or equal to the degree of $Q(x)$ and there are no holes)

- The vertical asymptote(s) will be the value(s) of x that make the denominator equal zero. - To find the horizontal asymptote, you can use one of the following rules:
(1) If the degree of $P(x)$ is less than the degree of $Q(\mathrm{x})$, there will be a horizontal asymptote at $y=0$.
(2) If the degree of $P(x)$ is equal to the degree of $Q(x)$, use the leading coefficients of $P(x)$ and $Q(x)$.
Example: Find the asymptotes of the function $r(x)=\frac{9}{x^{2}+4}$.

Graphing Rational Equations of the form $f(x)=\frac{P(x)}{Q(x)}$ (where the degree of $P(x)$ is less than or equal to the degree of $Q(x)$ and there are no holes)

Vertical asymptotes cannot be crossed, but horizontal asymptotes can be crossed. To find out where (if at all) a graph crosses its horizontal asymptote, divide using either synthetic or long division and set the remainder equal to zero.
Example: Graph the function $r(x)=\frac{9}{x^{2}+4}$. Label the asymptotes and intercepts.

